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A METHOD FOR COMPUTATION OF VIBRATION MODES 

AND FREQUENCIES OF ORTHOTROPIC THIN SHELLS OF REVOLUTION 

HAVING GENERAL MERIDIONAL CURVATURE 

By Howard M. Adelman, Donne11 S. Catherines, 
and William C. Walton, Jr. 
Langley Research Center 

SUMMARY 

This report describes a procedure for  computing the vibration modes and frequen- 
cies of thin shells of revolution having general meridional curvature and orthotropic elas- 
tic properties. The procedure is based on the finite-element method in which the direct- 
stiffness approach is used. A geometrically exact finite element is employed. A com- 
puter program based on this procedure has been written and details of the program a r e  
described. 
in the form of functions of the meridional coordinate. The stiffness and mass matrices 
a r e  computed by numerical integration by use of the trapezoidal rule. 

The geometric characterist ics of the shell are used as inputs to the program 

The computer program is applied to several  shell configurations including two 
cylinders? two conical frustums, shells of both positive and negative Gaussian curvature, 
and an annular plate. Frequencies are correlated with frequencies from previous inves- 
tigations for these shells. 
results from the previous investigations is generally excellent. 

The agreement between results of the present analysis and 

INTRODUCTION 

A problem of current interest to structural analysts in the aerospace field is that of 
determining the dynamic behavior of structures in which some of the components are thin 
shells of revolution. 
ponents can be of fundamental importance in connection with this problem. Consequently, 
much effort has gone into developing techniques to determine natural frequencies and mode 
shapes of the commonly encountered shells of revolution. Few closed-form solutions are 
known and, therefore? most of the developments have been in the a r e a  of approximation 
methods. 
and 2), Stodola-type iteration methods (ref. 3), finite-difference solutions (ref. 4), finite- 
element methods (refs. 5 to 9), and methods in which the shell boundary-value problem is 
reduced to an initial-value problem involving first-order differential equations which 

Understanding the modes of vibration of the individual shell com- 

Among the methods that have been tried a r e  Rayleigh-Ritz methods (refs. 1 



are numerically integrated (ref. 10). The finite-difference and numerical-integration 
methods involve a trial-and-error search for the natural frequencies that will make a 
certain determinant vanish. These "search methods" are relatively slow, and analysts 
using them have been known to overlook modes, as noted in reference 3. Stodola-type 
methods also lose numerical significance in the calculation of higher modes as noted in 
reference 3. 

< 

The authors, in the course of developing practical procedures to analyze the forced 
response of structures incorporating shells of revolution, required a method for  computing 
mode shapes and frequencies of shells of revolution having general meridional curvature 
and orthotropic elastic properties. These mode shapes and frequencies would be used in 
analyses of structures involving such shells where in the analysis the deformation of each 
shell is represented by superposition of a number of mode shapes of the shell. 
experience indicated that selection of representative modes for  a shell would require 
examination of a great number of its modes some high in the frequency spectrum. It was 
therefore necessary that: 

Early 

(1) The method should give capability for quick calculation of a large number of 
modes and frequencies 

(2) The mode shapes and frequencies quite high in the frequency spectrum should be 
accurately predicted 

(3) The analyst should be protected from overlooking modes in computation 

In view of these objectives, search methods and Stodola methods were considered 
unsatisfactory for the reasons of their inadequacy to meet these requirements. Both the 
Rayleigh-Ritz and finite-element approaches seemed to offer better chances for success 
in meeting the objectives. 

From the viewpoint of the analyst, the outstanding advantage of finite-element and 
Rayleigh-Ritz approaches is that they lead to a symmetric eigenvalue problem which is 
amenable to fast and accurate solution on a digital computer. In the methods available 
for solving symmetric eigenvalue problems, all the modes are computed simultaneously, 
and thus any danger of overlooking modes in computation is avoided. 

A finite-element approach was selected in preference to a Rayleigh-Ritz approach 
for  the following reasons: 

(1) The computing details of the Rayleigh-Ritz methods reported in references 1 
and 2 resulted in use of a large number of terms.  
conditioned eigenvalue formulations requiring that a large number of significant figures 
be carried in the calculations in order to retain significance in the results. 
trials with circular plates indicated that the finite-element approach leads to very well- 
conditioned eigenvalue problems. 
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These methods lead to relatively poorly 

Preliminary 



(2) It was believed that the finite-element method would converge more easily than 
the Rayleigh-Ritz method when local high s t r e s s  gradients, such as occur for some edge 
conditions (ref. ll), are present. 

The element most popularly employed in the finite-element analysis of shells of 
revolution has been the conical element (for example, refs. 8 and 9). 
exactly f i t  cylinders and conical frustums. However, for shells having a curved meridian, 
use  of this element leads to only an approximation of the shell by a series of joined conical 
frustums. Thus, the curved meridian is approximated by a se r i e s  of straight lines. Con- 
sequently, an analysis of a shell with a curved meridian based on conical elements may 
give inaccurate frequencies and stresses (refs. 5 and 6). 

This element can 

Analysts have been aware that the use of an element which coincides with the shape 
of the shell being analyzed would probably improve the accuracy in computed results 
(ref. 5). The main impediment to the use of such a geometrically exact element has been 
a reluctance on the par t  of analysts to give up a certain computational convenience asso- 
ciated with the conical element. This convenience is that since the shape is fixed, quadra- 
tu res  required to compute the stiffness and mass  matrices of the element a r e  performed 
only once, and the same matrices a r e  used in every analysis. With a geometrically exact 
element, the shape of the element depends on the shape of the portion of the shell which the 
element represents, with the result that the integration has to be an inseparable part  of 
each analysis. It has been recognized that a natural and probably feasible approach to 
making the quadratures part  of the analysis is to use numerical integration (ref. 5). 
ever, the objection has remained that for each element the radius of the shell and the two 
radii of curvature must be specified as functions of position along the meridian of the 
element. 

How- 

In spite of this objection, the decision was made to develop a computer program to 
meet the previously stated objectives based on a geometrically exact element. 
believed that the necessity for description of the geometry of an element in t e rms  of func- 
tions rather than of numerical parameters  would present no difficulties in practice if, as 
is nearly always the case, the geometry of the entire shell could be described by functions 
located in a subroutine which could be readily changed. Development has progressed to 
the point where the program has been applied to a variety of shells of revolution of practi- 
cal interest. Detailed correlations have been made between frequencies from the program 
and frequencies calculated for these shells by other investigators. A cursory correlation 
of mode shapes including s t resses .  has been made for some of these shells but as yet is 
inconclusive because of present unavailability of sufficient modal data f rom the methods of 
the previous investigators. These correlations a r e  not presented in this report. 

It was 

The main purposes of this report a r e  as follows: 

(1) To describe the analysis underlying the computer program 
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(2) To describe the computer program 

(3) To present the frequency correlations 

SYMBOLS 

coefficients in polynomial displacement function for normal dis- ‘0, k’ al, k’ %I, k’ a3, k 
placement w 

*k matrix which transforms displacements and rotations at ends of an element 
to coefficients of polynomial displacement functions (see eq. (13) and table I) 

coefficients in polynomial displacement function for meridional k7b 1,k’ b2, k’b3, k 
displacement u 

B matrix defined in equation (42) 

coefficients in polynomial displacement function for circumferential C0,k’cl,k’c2,k’c3,k 
displacement v 

ck matrix whose elements a r e  coefficients in an expression for strain energy of 
a shell element in te rms  of coefficients of polynomial displacement functions 
(see eq. (20)) 

Cll,C12,C22 membrane stiffness constants 

c66 in-plane shear  stiffness 

D diagonal matrix whose elements a r e  eigenvalues of mass  matrix (see eq. (39)) 

D I ~ , D ~ ~ , D ~ ~  flexural stiffness constants 

torsional stiffness D6 6 

el,e2,e12 middle-surface strains (see eqs. (la) to (IC)) 

Ek kinetic energy of kth element 

E kinetic energy of shell; also Young’s modulus 
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f 

Fk 

frequency 

matrix whose elements a r e  coefficients in an expression for kinetic energy of 
a shell element in t e rms  of coefficients of polynomial displacement functions 
(see eq. (30)) 

h shell thickness 

I identity matrix 

K number of elements used to represent a shell 

Kll ,K12,K22,K66 stiffness constants representing interaction between in-plane and 

L 

m 

Mk 

M 

n 

N 

P 

q 

Q 

r 

RltR2 

L-6053 

out- of -plane str ains 

meridional length of a shell 

meridional wave number for  a freely supported cylinder 

element mass  matrix 

shell mass  matrix 

circumferential wave number 

order  of stiffness and mass matrices after edge constraints have been applied 

matrix whose elements a r e  coefficients in an expression for kinetic energy 
of a shell element in t e rms  of displacements u, v, and w (see eq. (28)) 

index representing an integration station 

total number of integration intervals 

radius of a shell measured in plane normal to shell axis 

principal radii of curvature of shell 
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R 

8 

sk 

S 

‘k 

skq 

‘ki 

t 

Tk 

U 

U 

V 

v k  

V 

W 

X 

matrix whose elements a r e  coefficients in an expression for  strain energy of 
shell element in t e rms  of actual variables in s t ra in  energy (see eq. (16)) 

meridional coordinate 

element stiffness matrix 

shell stiffness matrix 

meridional distance from origin of s to reference edge of a shell b 

meridional distance from reference edge of shell to center of kth element ! 

meridional distance from reference edge of shell to qth integration station 
of kth element 

meridional distance from reference edge of a shell to ith location on kth 
element at  which mode shape is evaluated 

time 

inverse of matrix Ak 

meridional component of middle- surface displacement 

matrix whose columns a r e  eigenvectors of mass  matrix 

circumferential component of middle-surface displacement 

strain energy of kth element 

strain energy of shell 

normal component of middle- surface displacement 

meridional coordinate measured within a single element (see eq. (5)) 

meridional distance from center of kth element to qth integration station 
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X matrix which describes assumed form of variables appearing in strain energy 

Y column matrix containing unknown displacements and rotations 

Y matrix which describes the assumed form of displacements u, v, and w 

Z matrix defined in equation (43) 

P rotation of shell generator relative to unstrained direction (see eq. (10)) 

6 modal column (see eq. (44)) 

Y column matrix whose elements a r e  coefficients of assumed-displacement 
polynomials (see eq. (18)) 

meridional length of kth element 'k 

8 circumferential coordinate 

K ~ , K ~ , K ~ ~  changes in curvatures (see eqs. (Id) to (If)) 

X1,X2,. . . ,AN eigenvalues of mass  matrix 

5 column matrix whose elements a r e  displacements and rotations at ends of an 
element (see eq. (22)) 

P mass  density 

w circular frequency 

62 nondimensional frequency 

I-L Poisson's ratio 

Pr imes  denote differentiation with respect to s or x; superscript T denotes 
transpose of a matrix. 

Special notations used in machine plots of figures 16, 17, 20, and 21: 

N circumferential wave number 

S/L nondi mensional meridional distance 
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u,v,w middle-surface displacements in the meridional, circumferential, and normal 
directions, respectively 

UMAX,VMAX,WMAX maximum values of U, V, and W, respectively 

2 -2 2 = (Circular frequency) , sec 

DEVELOPMENT OF THE STIFFNESS MATRIX FOR A 

GEOMETRICALLY EXACT ELEMENT 

Strain Energy in Terms of Displacements 

For  purposes of the following analysis, reference is made to figure 1. In this fig- 
ure,  u, v, and w represent displacements in the meridional, circumferential, and 
normal directions, respectively, R1 and R2 are the two principal radii of curvature 
of the shell, and r is the radius of the shell measured in a plane normal to the shell 
axis. All three radii  are regarded as functions of the meridional coordinate s, measured 
along the shell from a reference edge. 

According to Novozhilov (ref. 12), the six strain-displacement relations which 
describe the local state of strain for a thin shell of revolution are as follows: 

Membrane s t ra in  in meridional direction: 
W el = u' + - 
R1 

Membrane s t ra in  in circumferential direction: 

In-plane shear strain: 

Change of curvature in meridional direction: 

Change of curvature in circumferential direction: 

Twist of the middle surface: 

8 
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For a shell which, in general, is composed of orthotropic layers, the strain energy 
is given in reference 13 (p. 45) as follows: 

where in equation (2) the integrations are taken over the shell surface and the following 
definitions hold: 

(1) C11, C12, C22 are membrane stiffnesses 

(2) Dll, D12, D22 a r e  flexural stiffnesses 

(3) c66 is the in-plane shear stiffness 

(4) D66 is the torsional shear stiffness 

(5) K11, K12, K22, K66 are stiffnesses due to the interaction between in-plane 
strains and changes in curvature 

All of these stiffnesses a re ,  in general, functions of the meridional coordinate s. Ref- 
erence 13 contains an excellent discussion of the derivation of the above stiffnesses for 
shells having various numbers of layers and composed of materials having various types 
of elastic properties. 

The work in the present study is based on Novozhilov's strain-displacement rela- 
tions (eqs. (la) to (If)), the energy expression of equation (2), and the definitions of the 
stiffnesses in reference 13 with the following single exception. The s t ra in  K~~ (called 
T in refs. 12 and 13) is defined by Ambartsumyan (p. 25) to be double the value of this 
strain as defined by Novozhilov. Since the authors prefer to use Novozhilov's definition 
of K ~ ~ ,  the value of De6 used herein is four t imes the value of De6 given in refer- 
ence 13 and the value of K66 is twice the value of K66 given in reference 13. 

For a shell of revolution vibrating in a natural mode with circular frequency w, 
the three displacements u, v, and w can be expressed as follows: 

u(s, e,t> = u(s)cos neeiwt] 

v ( s , ~ , t )  = v(s)sin nee 

w(s,e,t) = w(s)cos nee 

i w t  

i w t  
(3) 
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The displacements f rom equations (3) are substituted into the strain-displacement 
relations of equations (1). Substitution of the resulting strains into the strain- energy 
expression of equation (2) and integration with respect to 6 yields the strain energy in  
t e rms  of displacements. The amplitude of the s t ra in  energy fo r  n f 0 is as follows: 

For n = 0 the strain energy as given by expression (4) should be doubled. 
ceeding developments a r e  carr ied out on the assumption that n f 0 with the under- 
standing that for n = 0 appropriate expressions should be doubled. 

The suc- 

Representation of the Shell by Geometrically 

Exact Finite Elements 

The present analytical method follows the main steps of conventional finite-element 
analysis. It is noted, however, that each element coincides exactly with a slice of the 
actual shell. Hence, the elements a r e  spoken of as "geometrically exact elements." 

A typical idealization of a shell of revolution is shown in figure 2. Counting ele- 
ments from the reference edge, the following definitions a r e  made: 

K total number of elements 

length of kth element, measured along meridian curve of shell 'k 

X coordinate inside kth element, measured along meridian from center of kth 
interval so that following relationship holds: 
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distance along meridian from reference edge of shell to center of the 'k 
kth element 

= [XI( 

From the foregoing definitions for x and sk7 it follows that 

s = S k + X  (6) 

A numbering system has been adopted in which quantites such as displacement, 
derivatives of displacements, and rotations at s = s - E k  and s = Sk + - 'k a r e  indi- 

cated by subscripts k and k+l, respectively. Thus, for example, Wk is the normal 

is the meridional displacement at s = Sk + - 'k 2 '  displacement at s = Sk - - and uk+l 

Also, it is necessary to have a notation for the radius of curvature R1 at the locations 
'k s = S k r  -. The symbols Rl,k and Rl,k+l represent the respective values. 2 

k 2  2 

'k 
2 

a2,k 
a 

bO,k 
37k 

;17k 
27k 

b37k 
'O,k 

Assumed Displacement Field for Element 

As an approximation, the displacements u, v, and w a r e  assumed to have the 
following polynomial forms over the kth element: 

w = a  0,k + "l,kX + a2,kx2 + a3,kx37 

0,k + bl,kx + b2,kx2 + b3,kx3 
3 i u = b  

v = c  0,k + 'l,kX + '2,kX2 + '3,kX 

(7) 

where the a's, b's, and c ' s  a r e  undetermined coefficients. From equation (7) it fol- 
lows that: 

. -  
W 

W'  

W" 

U 

U' 

V 

.VI- 

/ -  

a 
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'I 

where 
I, 

lx1 = 

1 x x 2 x 3 0 0 0  0 0 0 0  0 
0 1 2 x  3x2 0 0 0 0 ' 0  0 0 0 

0 0 0  0 1 x x 2 x 3 0 0 0  0 
0 0 0  0 0 1 2 x 3 x 2 0 0 0  0 
0 0 0  0 0 0 0  0 1 x x 2 x 3  
0 0 0  0 0 0 0  0 0 1 2 X 3 X f  

0 0 2  6 x 0 0 0  0 0 0 0  0 

Relationship Between Undetermined Coefficients and Displacements 

and Rotations at Ends of Element 

The rotation of the meridian curve relative to  the unstrained direction is defined 
as p and is givenby 

U P = w ' - -  
R1 

It follows that 

and 

k+ 1 U 

Pk+l = Wk+l - Rl,k+l 
'k 
2 

results in the following relationship: 

E k  and x = - into the appropriate locations in equation (8) Inserting x = - - 2 

- 

Wk 
Uk 
Vk 
pk 

ui 
Vk 

wk+l 
uk+ 1 
'k+l 
pk+ 1 
U i + 1  

Vi+l 

= pkj 

- -  
"07k 
a 

a27k 
"3,k 
b 

bl,k 
b2,k 
b3,k 

O,k 
'l,k 
'2,k 

17k 

O,k 

C 

C - 39K 

(9) 

L 
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where the elements of matrix [Ad 
the following relationship results: 

are given in table I. When equation (13) is inverted, 

uk+l 
vk+l 
4r+l 
%+1 

= 

where 

The elements of the inverse matrix pk] a r e  given in table 11. 

Formulation of Element Stiffness Matrix 

From equation (4) the strain energy of an element may be written as follows: 

V k = ;  

'€d2 

b, w', w", u, u', v, vj[R] 

- ?  

W 

W' 

W" 

U 

U' 

V 

V' 
L A  

dx 

where 
meridional coordinate x. The elements of [R] a r e  listed in the appendix. Using equa- 
tion (8) in equation (16) permits  the strain energy to be written in t e rms  of the undeter- 
mined polynomial coefficients as follows: 

LR] is a 7 X 7 symmetric matrix, the elements of which are known functions of the 
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where 

o r  

where 

Finally, use  of the transformation expressed by equation (14) gives the strain energy as 

where 

F '  

Wk 
Uk 
Vk 
Pk 

Uk 

Wk+3 
Uk+l 
Vk+l 
Pk+ 1 
Ui+1 
Vk+l 
c -  

14 



Inspection of equation (21) identifies the shell element stiffness matrix pd as 

DEVELOPMENT OF CONSISTENT MASS MATRIX FOR 

THE GEOMETRICALLY EXACT ELEMENT 

If rotary inertia is neglected and if the shell is assumed to  be vibrating in a natural 
mode, the amplitude of the kinetic energy Ek for n # 0 is 

E k = -  cd2 ph(u2 + v2 + w2)r dx 
E kI2  

2 

where ph is the mass pe r  unit area of the shell. The quantity ph is a known function 
of s and therefore of x. As with the strain energy, the expression for  kinetic energy 
must be doubled for n = 0. 

Based on the assumed displacements of equation (7), the following relation may be 
written: 

where 
- 

1 x x 2 x 3 0 0 0  0 0 0 0  0 

0 0 0  0 0 0 0  0 1 x x 2 x 3  

[ Y ] = O O  0 0 1 x x 2 x 3 0 0  0 0 [ - 

Equation (24) can be rewritten in the form 

where 
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Using equation (25) with equation (27) yields 

where 

Fk = 71 1 E k/2 [Y] [P][Y] dX 
-'kI2 

In view of equation (14), equation (29) may be written as follows: 

Therefore, the element mass  matrix may be identified as [Md, where 

DERIVATION OF MODAL EQUATIONS 

In view of the numbering convention adopted for the elements, the second edge of the 
kth element coincides with the f i r s t  edge of the k+lst  element. 
lowing conditions of compatability are assumed to  hold at each such juncture: 

In this analysis, the fol- 

- - 

U' k+ 1 

c element 

- - .  
wk+l 

k+l 

'k+l 

pk+ 1 

U 

%+1 

%+l - - -  

for all k < K (33) , 

k+lst 
2lement 

Of the six equalities in equation (33), the f i r s t  four are standard. 
are valid only for shells having continuous distributions of stiffness. 

The last two, however, 

The total strain energy V and the kinetic energy E may be expressed as follows: 
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where vk and Ek are given in equations (21) and (3l) ,  respectively. zf the summa- 
tions of equations (34) are carr ied out and use is made of equation (33), the s t ra in  and 
kinetic energies may be written as follows: 

where 

S stiffness matrix, which is a symmetric positive semidefinite o r  positive 
definite matrix of order  6(K + 1) 

M mass  o r  inertia matrix, which is a symmetric positive definite matrix of 
order  6 ( K +  1) 

Y a vector containing all of the unknown displacements and rotations 

In the present method, the matrices S and M are constructed by the well-known 
procedure of superimposing element matrices, illustrated in figure 3. 
shows, the superposition consists of placing appropriate shell element matrices in the 
matrices S and M s o  that the matrix elements in the lower right 6 X 6 block of the 
kth matrix add to the corresponding matrix elements in the upper left 6 X 6 block of the 
k+ 1 st matrix . 

As the figure 

The modal equations for shells with no edge constraints may be derived by mini- 
mizing the quantity E - V with respect to each of the variables in the vector y. This 
minimization is equivalent to the following se t  of equations, 6(K + 1) in number: 

Equations (36) can be expressed in the form 



Rigid edge constraints are incorporated by deleting from the stiffness and mass 
matr ices  of equation (37) those rows and columns which correspond to displacements and 
rotations that must vanish to satisfy the constraints. The form and character of equa- 
tion (37) are not affected by the deletion of rows and columns from the matrices S and 
M, except that S may become positive definite instead of positive semidefinite. Of 
course, the order  of matrices S and M is reduced. 

Equation (37) determines 6(K + 1) natural frequencies and modal columns. The 
computation of these frequencies and modes is a standard operation. However, for com- 
pleteness, some of the reductions involved in the solution a r e  given in the section which 
follows. 

The modal columns consist of values of displacements and rotations at each of the 
K + 1 junctures on the shell. For many purposes a more detailed mode shape is 
required. From equation (7) with x replaced by s - sk, the following equations can be 
written for the mode shape within the kth element: 

2 
= aO,k + al,k(s - ‘k) + a2,k(s - ‘k) + a3,k(s - 

The coefficients a through c a r e  computed by using equation (14). O,k 3,k 

COMPUTATIONAL METHOD AND COMPUTER PROGRAM 

In this section, the details of the computing method a r e  given. Each step is dis- 
The steps a r e  intended to cussed and the flow of information is shown in block diagrams. 

be specific enough to allow a digital computer program to be written by using them as a 
guide. 

1 

The basic organization of the computer program used in the present analysis is 
shown in block diagram 1. 

The input which describes the geometry of the shell and its physical properties is 
first read, and stiffness and mass matrices referred to the coefficients of the displace- 
ment polynomials a r e  then computed. These matrices a r e  transformed s o  that they a r e  
re fer red  to the displacements and rotations at the ends of the element. When a stiffness 
and a mass matrix have thus been computed for each element, the matrices are super- 
imposed to form the shell stiffness and mass matrices. If the shell has rigid edge 
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constraints, then appropriate rows and columns are deleted from the stiffness and mass  
matrices to satisfy these constraints. The stiffness and mass matrices then constitute 
the ingredients to an eigenvalue problem which is solved for frequencies and modal 
columns. From the modal columns, the coefficients of the displacement polynomials are 
computed. The detailed mode shapes a r e  then evaluated. 

I 

f 

. . I  . 

-. -. . . - =~ ~ - -  
COMPUTE ELEME-m S T P F F S S  MA" ANJ.ELEMENT 

MASS MATRIX REFERRED TO DISPLACEMENTS 
AND ROTATIONS AT ENDS O F  ELEMENT- 

- -  . . . - .- - . 

.. . .. 

. . . . .. . . - ~  

. .. . - 

. .  . 

. .  . . .. .- ~~. - r~ 

DISPLACEMENT POLYNOMIALS I 

Block diagram 1. 
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A more detailed block diagram (see block diagram 2) is shown. 

- (2piiF+ 

I ( 2 )  
COMPUTE sk, k=l,P,.-.K 

( " ( P R I N T I N P U T ,  sk. j N D  EDGE C O N S T R A I N T I  

t 

i 

' i   STIFFNESS AND MASS MATRICES T O ~ Z E R O !  

t 

t 

t 
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B l o c k  diagram 2. 
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A detailed discussion of the computing in each block of block diagram 2 is as 
follows: 

BLOCK 1: 

The following input quantities are required: 

K number of elements used to  represent shell 

length of kth element, where k = 1, 2, . . ., K ‘k 

meridional distance from origin of s to reference edge of shell 

The following input functions are required: 

l/R1, 1/R2 reciprocals of principal radii of curvature 

r shell radius measured in a plane normal to the shell axis 

r t , R l t  meridional ra tes  of change of r and R1 

mass per  unit a r ea  Cph) 
The following control numbers are required: 

NBEG initial value of n 

NLAST final value of n 

Q number of integration intervals to be used within each. element 

IPRINT if IPRINT = 0, intermediate matrices are not printed 
if IPRINT # 0, intermediate matrices are printed 

NMODE number of mode shapes to  be computed 
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IINT number of locations along each element at which mode shape is to be evaluated 

ICASE edge constraint code (see table 111) 

BLOCK 2: 

1 
= so + 2 €1 

k- 1 

BLOCK 4: 

n = NBEG, NBEG + 1, . . ., NLAST 

BLOCK 5: 

KN = 6(K + 1) 

BLOCK 7: 

k = 1, 2, . . ., K 

BLOCK 8: 

(k = 2, . . ., K) 

The elements of [T~], a 12 x 12 matrix, a r e  given in table 11. 

BLOCK 9: 

q =  1 , 2 ,  . . ., Q +  1 

BLOCK 10: 

Each element is divided into Q equal intervals for the numerical integration. 
There a r e  then Q + 1 integration stations. The values of x and s at the qth integra- 
tion station of the kth element are,  respectively, defined as 

Xkq = €k(v - +) 
and 

BLOCK 11: 

(q = 1, 2, . . ., Q + 1) 

(q = 1, 2, . . ., Q + 1) 

The elements of [XI, [Y], [PI, and [R] a r e  given in equations (9), (26), (28), 

and (Al) to (A28), respectively. The matrices p(xkq] and cy(xkq] are found by 
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substituting x in equations (9) and (26), respectively. The matrices kq 
are found by substituting s into equations (28) and (Al) to (A28), respectively. kq 

p M F k q ]  = puMFk,q-d  + pkq] 

BLOCK 13: 

(q = 2, 3, . . .,Q) 

The manner in which the matrices (either stiffness or mass) a r e  placed in the over- 
all matrix is illustrated in figure 3. 
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BLOCK 16: 

Commonly encountered edge constraints along with the appropriate rows and 
columns to be deleted from S and M a r e  given in table 111. 

BLOCK 17: 

Compute by the threshold Jacobi method (ref. 14, p. 397) a modal matrix U and a 
set  of eigenvalues AI ,  . . ., AN f o r  the matrix M. Then 

UTMU = D = 

and 

where 

N order of matrix M 

0 

UTU = I 

I identity matrix of order  N 

Since M is positive definite, all diagonal elements of D a r e  positive. 

Compute : 

\Ix2 

D1/2= T' 

(39) 
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Compute Z, a modal matrix of B, by the threshold Jacobi method. Then 

2 

w22 
T Z B Z =  

L o  
T z Z = I  

The values of w 2  are the squares of the circular frequencies. 

The columns of 6 are the modal columns. After the computation of the modal columns, 
insert zeros  in the locations which correspond to rows and columns deleted from S 
and M. 

BLOCK 18: ~ ~ ~ ~ _ _ _ _  

The output consists of the following: 

(1) Lists of circular frequency squared 02, circular frequency w,  and 
frequency f .  

(2) For  each mode, an array of displacements and rotations as follows: 

w1 u1 v1 p1 ui vi 
w2 u2 v2 p2 ua vi 

vK+l U' K+ 1 pK+ 1 K+ 1 V WK+l %+1 

Note that zeros  again appear in the locations corresponding to deleted rows and columns 
in S and M. 

BLOCK 19: 

i =  1, 2, . . ., NMODE 

BLOCK 20: 

k = 1, 2, . . ., K 
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BLOCK 21: 

where the elements of Tk a r e  given in table 11. 

BLOCK 22: 

Wk 
uk 
'k 
Pk 
ui 
'k 

"k+l 
'k+ 1 
'k+l 
3k+1 
$+1 
%+l 
- 4  

For the purpose of computing the detailed mode shapes, each element is divided 
into IINT intervals. 
is IINT + 1. The value of s at the ith location of the kth interval is defined as ski and 
is given by 

The number of locations at which the mode shape is to be evaluated 

- 

(i = 1, . . ., IINT + 1; k = 1, . . ., K) 1 - 1  1 Ski = Sk + Ek( IINT 2) 

The mode shape over the portion of the shell represented by the kth element is then com- 
puted from: 

2 3 
w = a  O,k + "l,k(ski - 'k) + a2,k(ski - 'k) + a3,k(ski - 'k) 

The entire mode shape is then constructed by placing the portions end to end. 

BLOCK 23: 

The mode shape consists of a r r ays  of u, v, and w. 
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APPLICATIONS AND DISCUSSION 

Description of Shells Analyzed 

In order to ascertain the generality and efficacy of the present method for  computing 
natural frequencies, a number of applications were made. 
shown in figure 4, were treated: 

The following configurations, 

(1) An isotropic cylinder with freely supported edges investigated by Arnold and 
Warburton (ref. 15) using an exact solution. 

(2) An orthotropic cylinder with freely supported edges investigated by Hoppmann 
(ref. 16) using an exact solution. 

(3) An isotropic 120° conical frustum with both free-free and clamped-free edges, 
investigated by Naumann (ref. 1) using a Rayleigh-Ritz analysis. 

(4) An isotropic shell having positive Gaussian curvature with freely supported edges 
investigated by Cooper (ref. 4) using a finite difference solution. 

(5) An isotropic shell having negative Gaussian curvature with freely supported edges 
also investigated by Cooper (ref. 4). 

(6) An isotropic annular plate with free  edges, investigated by Raju (ref. 17) using 
an exact solution. 

Correlation With Previous Investigations 

Frequencies and mode shapes were computed for these shells, and the frequencies 
were compared with those from existing solutions. 
each shell. 
relations to follow, the quantities to be compared a r e  called frequency parameters. 
the cylinders, conical frustums, and annular plate, the parameter is the square of the 
circular frequency. 
eter is a dimensionless frequency defined in the appropriate tables and figures. 

Ten elements were used to represent 
One hundred integration intervals within each element were used. In the cor- 

F o r  

For  the shells of positive and negative Gaussian curvature, the param- 

Frequencies based on the methods of previous investigators were obtained as follows: 

(1) For the cylinders and the annular plate, the methods of the previous investigators 
(refs. 15, 16, and 17) were automated for computation on a digita1,computer. 
physical data of the orthotropic cylinder were obtained from reference 18. 

Some of the 

(2) For the conical frustums, the computer program of Naumann (ref. 1) was used. 

(3) For the shells of positive and negative Gaussian curvature, frequencies were 
provided by Paul A. Cooper who obtained them by use of a computer program based on 
procedure described in reference 4. 

the 

27 



Presentation of Results 

Calculations were performed with the present method for  each shell using a range 
on the circumferential wave number n of 0 through 10 because the minimum frequencies 
fo r  the shells were in this range. Since all calculations by the present method were based 
on representations by 10 elements, approximately 60 modes pe r  value of n were gener- 
ated. Because presentation of all these modes appeared impractical, a decision had to be 
made as to which modes to present for  each shell. 
a mode for  presentation was whether a calculation of the frequency parameter was avail- 
able from one of the methods of the previous investigators for  comparison. 

A main consideration in selection of 

Minimum frequencies.- The minimum frequency parameter for  each value of n 
was available fo r  every shell. Correlations for  minimum frequency parameters a r e  pre- 
sented in table IV. The information in this table is shown graphically in figures 5 to 11. 
The frequency parameters in these figures should be viewed both as results of the present 
analysis and as results of the previous investigators since the differences a r e  too small 
to  be seen on the plots. Some experimental results from references 16 and 1 a r e  shown 
in figures 6 and 7, respectively. 

Higher modes of cylinders.- The selection of which higher frequency parameters to 
present was made for each shell on an individual basis. For the cylinders, the solutions 
of Arnold and Warburton and of Hoppmann give exact frequency parameters for  all modes. 
In order to describe which of these modes were selected for correlation, i t  is necessary 
to discuss briefly the nature of the exact mode shapes for the freely supported cylinders. 
The exact mode shapes have the form: 

u = A,, cos 9 COS n0 
L 

v = Bmn sin sin ne L 

where m takes on integer values and Amn, Bmn, and Cmn are constants which char- 
acterize a mode. 

Thus, m is equal to the number of nodal circles in u or one plus the number of 
nodal circles in v o r  w. For a given pair of values for m and n, three modes are 
possible. For each 
value of n, modes were arbitrarily selected for  values of m from 1 to 5. The cor- 
responding frequency parameters computed by the present analysis were identified by 
inspecting the computed mode shapes and counting nodal circles. Correlations for  the 
higher frequency parameters of the cylinders are presented in tables V and VI for  the 

Each mode corresponds to a different ratio of Amn : Bmn : Cmn. 



values of n and m considered. For  the purpose of illustration, the variations with m 
of the three frequency parameters associated with each value of m are shown in fig- 
u re s  12 and 13 for n = 2. 

Higher modes of conical frustums.- For the conical frustums, a large number of 
frequency parameters were available from Naumann's Rayleigh-Ritz procedure for  com- 
parison with results of the present analysis. Modes 
were selected for presentation as follows: 
circles in the w-displacement were examined. 
were exactly three modes having a given number of circumferential waves and a given 
number of circular node lines in the w-displacement. For  the conical frustums, there 
are usually not exactly three. 
analysis, an arbitrary selection of modes was made. If there are three o r  less modes 
corresponding to  a given number of nodal circles in w, all are presented. 
more than three, only three are presented. 
table tells  which modes of the conical frustums having five o r  less nodal circles in w 
are not presented: 

A correlation was made for  n = 2.  
First, all modes having from one to five nodal 

For  the freely supported cylinders, there 

For  purposes of presenting frequencies in the present 

If there are 
To avoid any misunderstanding, the following 

Free-free 

Clamped- f r ee 

Nodal circles 
in w 

Nodal circles 
in u 

0 

Nodal circles 
in v 

0 

The correlations for the higher frequency parameters of the conical frustums for n = 2 
are shown in tables VI1 and VIII. 
and 15. 
the results of the present analysis o r  the other investigation since the results are coinci- 
dent for  plotting purposes. 
analysis corresponding to  the frequency parameters in figures 14 and 15 a r e  shown in fig- 
u r e s  16 and 17. 

This information is also shown graphically in figures 14 
As  in figures 5 to 11, the results in figures 14 and 15 can be interpreted as either 

As a matter of interest, the mode shapes from the present 

Higher modes of ~~ shells having positive and negative Gaussian curvature.- For the 
shells of positive and negative Gaussian curvature, no higher frequency parameters were 
available from Cooper's method for correlation. As a matter of interest, some higher 
frequency parameters computed by the present analysis for  these shells are presented for  
n = 2 in tables M and X. 
less circular node lines in w are presented. As was the case with the cylinders, there 

Specifically, frequency parameters for  modes having four or 
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are exactly three frequencies corresponding t o  each number of circular node lines in w. 
The variation of the three frequency parameters with the number of circular node lines 
in w is shown in figures 18 and 19. The mode shapes corresponding to  the frequency 
parameters in figures 18 and 19 are shown in figures 20 and 21. 

Discussion of the Applications 

The correlations in tables IV to VIII can be summarized as follows: All frequency 
parameters presented for  the two cylinders, the shells of positive and negative Gaussian 
curvature, and the annular plate showed agreement with the results of the previous inves- 
tigators through at least the second significant figure. For the cylinders, the agreement 
was in most cases through six significant figures. 
most frequency parameters predicted by the present analysis agreed with the frequency 
parameters from the method of reference 1 through at least the second significant figure. 
The exceptions were the ninth, eleventh, and twelfth values of w2 listed in table VI1 in 
which the frequency parameters from the present analysis were lower in the second sig- 
nificant figure. It is noted in reference 19 that under certain conditions (that are met by 
the present analysis) the finite-element method is equivalent to the Rayleigh-Ritz method 
in that both methods give upper bounds to the exact frequencies. Therefore, it follows 
that the frequency parameters predicted by the present analysis are better approxima- 
tions to the corresponding exact frequency parameters than are the frequency parameters 
from the method of reference 1. It is believed that the f i r s t  significant figure in the three 
frequency parameters is probably correct and that the lack of agreement for  these fre- 
quency parameters does not indicate any significant inaccuracy in the results of the pres- 
ent analysis. For the clamped-free conical frustum, most frequency parameters pre- 
dicted by the present analysis again agreed with the frequency parameters from the 
method of reference 1 through at least the second significant figure. The exceptions in 
this instance are the minimum frequency parameters in table IV for n = 1, 2, and 3 and 
the eighth and ninth values of the frequency parameters w 2  listed in tableVII1. For the 
eighth and ninth values of w 2  listed in table VIII, the present analysis predicted fre- 
quency parameters which were lower than the corresponding values from the method of 
reference 1. As with the free-free conical frustum, these differences occurred in the 
second significant figure. It is again concluded that the present results are closer to the 
exact frequency parameters.  In the case of the noted disagreement in table IV, the fre- 
quency parameters from the present analysis are higher (in the first significant figure 
for  n = 2) than the corresponding result from the method of reference 1. By reasoning 
similar to that used in the preceding discussion, it is concluded that the present analysis 
is somewhat inaccurate fo r  the minimum frequency parameters of the clamped-free coni- 
cal frustum for n = 1, 2, and 3. 

For the free-free conical frustum, 

1 
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No dependence of accuracy on the circumferential wave number was noted. Further- 
more, only slight degradation of accuracy was noted as modes with increasing numbers of 
circular node lines in w were considered. In the latter instance, significant degrada- 
tion might have been expected. The only notable degradation of accuracy was with regard 
to  edge constraint. The frequency parameters of the conical frustum with a clamped edge 
(tables IV and VIII) showed worse correlation with the results of the previous investiga- 
tions than did the frequency parameters  of shells with free o r  freely supported edges. 

.For the reasons stated in the introduction, no correlations are presented f o r  mode 
shapes. However, a cursory correlation between the mode shapes from the present anal- 
ysis  and such mode shapes as were available from the methods of the previous investiga- 
t o r s  was made. 
the exact mode shapes which are sine and cosine curves. The computed mode shapes 
corresponding to some of the minimum frequencies of the free-free conical frustum 
appeared to agree with those mode shapes published in reference 1. The authors also 
made some correlations of mode shapes for  a few of the higher modes of the conical 
frustums obtained by the method of reference 1. For these mode shapes the present anal- 
ysis  and the method of reference 1 appeared to agree very well. 

The computed mode shapes for the cylinders appeared to coincide with 

Computational Efficiency and Reliability 

As was stated in the introduction, two major objectives of the computer program 
(1) machine efficiency, that is, the ability to compute quickly a large number of were: 

frequencies and mode shapes; (2) reliability, that is, capability of predicting every mode 
in the range of the frequency spectrum of interest. 
Typically, over 600 frequencies and modal columns are computed in l e s s  than 15 minutes 
on the Control Data 6600 computer system. Reliability was not proven but is indicated by 
the correlations obtained by the exact theory for the cylinders. The eigenvalue problems 
generated were well conditioned, since only single-precision arithmetic was required for  
accurate solution. 

Machine efficiency was achieved. 

Limitations 

Experience with this computer program and with the correlations are believed to  
indicate that the major limitation of the program in its present fa rm lies in the approxi- 
mation of the normal displacement w by a third-order curve over each element. (See 
eq. (7).) 
that: 

From the assumption that w is a third-order curve in each element, it follows 

(1) Certain moment resultants are discontinuous across  junctures between elements. 
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(2) The moment distributions may be seriously in e r r o r  if the moment distribution 
in a region represented by a single element has a variation of higher order than linear. 

Some results of modal stress calculations for  modes with large moment gradients 
are suspected to be in e r ro r .  Furthermore, the e r r o r s  previously noted in some mini- 
mum frequencies of the clamped-free conical frustum are believed to stem from the third- 
order  approximation since a steep moment gradient is known to occur near a clamped 
edge. A possible remedy is to increase by two the order of polynomial representation of 
w and to require continuity of curvature across  element junctures. 

Another limitation which is emphasized is the restriction of the present analysis to 
shells for which the shell surface does not intersect the axis of the shell. 
analysis is not applicable to configurations such as a hemisphere. 

Thus, this 

Finally, the reader is reminded that the analysis is restricted to shells with con- 
tinuous stiffness distributions as noted f rom the conditions imposed by equation (33). 
This restriction is easily removed by replacing the last two equalities of equation (33) by 
appropriate conditions on the continuity of s t r e s s  and moment resultants across  element 
junctures. 

CONCLUDING REMARKS 

An analytical procedure based on the finite-element method is developed for com- 
The shells may 

The details of a 
puting natural frequencies and mode shapes of thin shells of revolution. 
have general meridional curvature and orthotropic elastic properties. 
computer program based on this procedure are described. 

A distinguishing feature of the procedure is that it employs an element which is 
geometrically exact in that the actual geometry of the shell being analyzed is input to the 
analysis in the form of functions. The displacements of the shell within an element are 
approximated by third-order polynomials which are defined over the element. 
element compatibility is expressed by equating displacements and rotations a t  all junc- 
tures  between elements. The required integrations for  computing the element stiffness 
and mass matrices a r e  performed numerically by using the trapezoidal rule. The stiff- 
ness  and mass matrices for the complete shell are formed by superposition. Edge con- 
straints are incorporated by deleting rows and columns from the complete shell stiffness 
and mass matrices. 
method. 

Inter- 

The resulting symmetric eigenvalue problem is solved by a standard 

The computer program has been applied to several  shells: 

(1) An isotropic cylinder with freely supported edges 

(2) An orthotropic cylinder with freely supported edges 
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(3) A 1200 conical frustum with free-free edges 

(4) A 1200 conical frustum with clamped-free edges 

(5) A shell having positive Gaussian curvature with freely supported edges 

(6) A shell having negative Gaussian curvature with freely supported edges 

(7) An annular plate with free-free edges 

The main results and conclusions are as follows: 

1. Very generally, excellent agreement was noted between frequencies from the 
present analysis and frequencies from the previous investigations. 

2. The only inaccuracies of the present analysis which might be considered signifi- 
This cant occurred in three minimum frequencies of the clamped-free conical frustum. 

inaccuracy is believed to stem from the inability of third-order polynomials to conform 
to a steep s t r e s s  gradient near a clamped edge, and consequently increasing the repre- 
sentation of the normal-displacement component to a fifth-order polynomial would be 
expected to result in overall excellent agreement. 

3.  The computer program performs with very short running times and no modes are 
overlooked in computation. 

4.  The natural frequencies and mode shapes from this method appear to constitute 
reliable input for forced response calculations for structures involving shells of 
revolution. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 3, 1968, 
124-08-05-08-23. 
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APPENDIX 

ELEMENTS OF MATRIX [R] 

pee eq. (16g 

C l l r  C12r D12n2 Kl l r  K12n2 K12r +-+- 
RlRZ r R15 = R51 = F+ - +- +- 

R2 rR1 R12 

R23 = R32 = D12r' 
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APPENDIX 

D12" 
R1 K12r' R25 = R52 = - ~ - 

+ K66n 
D66n R27 = R72 = - 
R2 

R33 = Dllr 

D12r' - K12r' - - R34 = R43 = Di iRi r  
R12 R1 

K1 lr 
D l l r  

R1 
R35 = R53 = - - - 

R37 = R73 = 0 

D11Rir D12r' K11Rir 2K12r' 
R45 = R54 = C12r' - +-- +- 

~~3 ~~2 R12 R1 
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APPENDIX 

Dllr 2Kllr  R55 = Cll r  + - + - 
R12 R1 

R57 = R75 = 0 
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p-2 8Rl,k 

-1 

2 1 - -  

'k3 Ek2Rl,k 

1 
2 
- 0 

-3  

2E k 
0 - 

0 0 

2 

' k3 
0 - 

0 0 

0 l o  

TABLE II.- ELEMENTS OF MATRM T ck3 
- 0 - 1 k 0 -  -'k 0 'k 0 8 2 BR1, k i l  8 

0 

- - l  0 0 -  0 0 -1 - -1 
O 4  

3 
O 4  2Ek 4Ri,k+i 

- 0 - -l 0 0 0 0 0 1 0 1 
2E k 2E kR1, k+l 2 E  k 

- - 0 0 1 0 - 2  1 0 0 1 0 -  
' k2 E k3 ' k2R1, k+ 1 ' k2 

0 0 0 - Ek 0 
8 

1 
2 
- 

- 0 0 3 -1 - 04 0 0 -1 - 
O 4  2 E  k 

0 

0 0 -  0 0 -1 

2'k 
0 - 0 1 

2E k 
0 0 

0 1 0 0 -  0 0 0 0 -  1 -2 

' k2 ' k3 ' k2 
- 

k 0 -  
8 

0 1 
2 
- 0 0 - E k  0 

8 
0 1 

2 
- 

- -l  0 
O 4  - 3 0  

2E k 
- -1 

4 
- 0 0 3 

2E k 
0 

1 0 0 0 - 1 0  0 0 0 0 - 
2E k 2E k 

- 1 - - - 0 0 0 0 -2 

' k3 ' k2 

1 
2 0 0 2 

E k3 E k  
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TABLE ID.- EDGE CONSTRAINTS 

ICASE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Description 

F ree - f r ee  

Free-freely supported 

Freely supported-free 

Free-simply supported 

Simply supported-free 

Free-clamped 

Clamped-free 

Freely supported- 
f reely supported 

Simply supported- 
simply supported 

Clamped-clamped 

Freely supported- 
simply supported 

Freely supported- 
clamped 

Simply supported- 
freely supported 

Simply suppoi-ted- 
clamped 

Clamped- 
f reely supported 

Clamped- 
simply supported 

Equations for  edge constraint 

None 

v(L) = w(L) = 0 

v(0) = w(0) = 0 

u(L) = v(L) = w(L) = 0 

u(0) = v(0) = w(0) = 0 

u(L) = v(L) = w(L) = P(L) = 0 

u(0) = v(0) = w(0) = P(0) = 0 

v(0) = w(0) = 0 
v(L) = w(L) = 0 

u(0) = v(0) = w(0) = 0 
u(L) = v(L) = w(L) = 0 

u(0) = v(0) = w(0) = P(0) = 0 
u(L) = v(L) = w(L) = P(L) = 0 

v(0) = w(0) = 0 
u(L) = v(L) = w(L) = 0 

v(0) = w(0) = 0 
u(L) = v(L) = w(L) = P(L) = 0 

u(0) = v(0) = w(0) = 0 
v(L) = w(L) = 0 

u(0) = v(0) = w(0) = 0 
u(L) = v(L) = w(L) = O(L) = 0 

u(0) = v(0) = w(0) = P(0) = 0 
v(L) = w(L) = 0 

u(0) = v(0) = w(0) = P(0) = 0 
u(L) = v(L) = w(L) = 0 

Rows and columns deleted 

None 

(6K + l), (6K + 3) 

1, 3 

(6K + l ) ,  (6K + 2), (6K + 3) 

1, 2, 3 

(6K + l ) ,  (6K + 2), (6K + 3), (6K + 4) 

1, 2, 3, 4 

1, 3, (6K + l) ,  (6K + 3) 

1, 2, 3, (6K + l ) ,  (6K + 2), (6K + 3) 

1, 2, 3, 4,  (6K + l) ,  (6K + 2), (6K + 3), (6K + 4) 

1, 3, (6K + l ) ,  (6K + 2), (6K + 3) 

1, 3, (6K + l ) ,  (6K + 2), (6K + 3),  (6K + 4) 

1, 2, 3, (6K + l) ,  (6K + 3) 

1, 2, 3, (6K + l ) ,  (6K + 2), (6K + 3), (6K + 4) 

1, 2, 3, 4, (6K + l ) ,  (6K + 3) 

1, 2, 3, 4,  (6K + l ) ,  (6K + 2), (6K + 3) 
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TABLE 1V.- COMPARISON O F  MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY 

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS 

Circumferential 
wave number, 

n 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Circumferential 
wave number, 

n 

~_ -- 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Freely supported-freely supported cylinder 
_. 

Isotropic 

Present  analysis 

3.86111 X lo8 
1.17339 X lo8 
2.25430 X lo7 
5.95827 X 107 
2.17401 X 106 
1.11765 X lo6 
9.09145X lo5 
1.11505 X lo6 
1.64300 X lo6 
2.50514 X lo6 
3.75508 X lo6 

. - 

~. - ~ 

Reference 15 

3.86111 X 108 
1.17339 X 108 
2.25430 X lo7 
5.95827 X lo7 
2.17401 X 106 
1.11765 X lo6 
9.09145 X lo5 
1.11505 X lo6 
1.64300 X lo6 
2.50514 X 106 
3.75508 X lo6 

- 

~. 

Present  analysis 
.- - _- 

0 
0 
2.8727 X lo2 
1.9154 X lo3 
6.3759 X lo3 
1.5047 X lo4 
2.7824 X lo4 

6.6322 X lo4 
9.5417 X lo4 
1.3333 x lo5 

4.4394 x 104 

__ __  ~ . 

.. 

Present  analysis 

8.01167 X 108 
1.09559 X lo8 
2.15504 X lo7 
5.53142 X 107 
1.85439 X lo8 
4.74829 X lo8 
1.01231 X 109 
1.90756 X lo9 
3.29043 X lo9 
5.31084 X lo9 
8.13868 X lo9 

- 

w2, sec-2 

120° conical frustum 
~ . .  

- 

Free-free 

... 
Reference 1 

0 
0 
2.8725 X lo2 
1.9149 X lo3 
6.3728 X lo3 
1.5038 X lo4 
2.7815 X lo4 
4.4387 X lo4 
6.6310 X lo4 

1.3329 X lo5 
9.5394 x 104 

Orthotropic 

Reference 16 

8.01167 X lo8 
1.09559 X lo8 
2.15504 X lo7 
5.53142 X lo7 
1.85439 X lo8 
4.74829 X 108 
1.01231 X lo9 
1.90756 X lo9 
3.29043 X 109 
5.31084 X lo9 
8.13868 X lo9 - 

- 

Clamped-free 

Present  analysis 

2.5380 X lo4 
3.7049 X lo5 
7.2558 X lo4 
2.2666 X lo4 
1.3694 X lo4 
1.7636 X lo4 
2.8529 X lo4 
4.4524 X lo4 
6.6338 X lo4 
9.5418 X lo4 
1.3333 X lo5 

~ 

Reference 1 

2.5378 X lo4 
3.6125 X lo5 
6.9075 X lo4 
2.1638 X lo4 
1.3434 X lo4 
1.7611 X lo4 
2.8520 X lo4 
4.4507 X lo4 
6.6324 X lo4 

1.3329 X lo5 

- .  ~ 

9.539 x 104 

- 
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TABLE IV.- COMPARISON O F  MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY 

PRESENT METHODS WITH THOSE O F  PREVIOUS INVESTIGATIONS - Concluded 

Circumferential  
wave number, 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Circumferential  
wave number, 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Dimensionless frequency parameter ,  S2 = wR[(p/E)(l - 
Shell of positive 

Gaussian curvature ,  
f reely supported edges 

P resen t  analysis  

---- 
0.411 

.360 

.340 

.331 

.327 

.324 

.323 

.322 

.321 

.321 

Reference 4 

---- 
0.412 

.362 

.340 

.331 

.327 

.324 

.322 

.321 

.321 

.321 

P r e s e n t  analysis 

86.74 
295.8 

18.24 
130.5 
443.8 

1 0 8 7  
2 215 
4 003 
6 660 

10 415 
15 532 

Shell of negative 
Gaussian curvature,  

f reely supported edges 

P resen t  analysis 

0.640 
.368 
.157 
.0628 
.01970 
.00779 
.01923 
.02804 
.02580 
.0240 
.0292 

d, sec-2 

Reference 4 

0.640 
.368 
.157 
.0628 
.01972 
,00784 
.01924 
.02805 
.02609 
.0241 
.0292 

Pla t e s  

Reference 17 

86.74 
295.8 

18.24 
130.5 
443.8 

1 0 8 7  
2 215 
4 003 
6 660 

10 415 
15 532 
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m 

n = 3  

1 

2 

3 

4 

5 

- 
m 

TABLE V.- CORRELATION OF FREQUENCY PARAMETER d O F  FREELY SUPPORTED CYLINDER 

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15 

Present  analysis 1 Reference 15 

n =  0 
_ _ _ ~ ~  
___~ 

,f 1.950193 X lo9 

1.53415 X lo9 ' 4.57961 X I O 9  
[ 1.54445 X lo9 

1.58626 X lo9 ' 9.96586 X lo9 
( 3.47507 X lo9 
[ 1.59995 X lo9 

1.75668 X lo8 1 6.17832 X lo9 
( 1.60572 X lo9 

1 9 . 6 5 5 3 9  X lo9 
2.73552 X lo lo  

__ 

r 5.95827 x io6 
6.15055 X lo9 
1.85829 X lolo 

( 6.66567 X lo7 
7.56577 X lo9 

( 2.15282 X 10" 

r 2.13124 X lo8 
9.67973 X lo9 c 2.66367 X 1O1O 

r 4.10749 X lo8 
1.24380 X lolo 

(3.39988 X 1O1O 

[ 6.12256 X lo8 
4.36214 X 1O1O 

L 1.58850 X lo lo  
~~ 

1.950193 X lo9 
9.00656 X lo8 
3.86111 X lo8 
1.53415 X lo9 
4.47961 X lo9 
1.54445 X lo9 
1.58626 X lo9 
9.96570 X lo9 
3.47500 X lo9 

1.59995 X lo9 
1.75655 X lo8 
6.17778 X lo9 

1.60571 X lo9 
2.73485 X 1O1O 
9.65279 X lo9 

5.95827 X lo6 
6.15055 X 109 
1.85829 X 1O1O 

6.66563 X lo7 
7.56576 X lo9 
2.15282 X 1O1O 

2.13118 X lo8 
9.67963 X lo9 
2.66367 X 1O1O 

4.10708 X lo8 
1.24372 X 1O1O 
3.39978 X 1O1O 

6.12119 X lo8 
4.36131 X 1010 
1.58813 X 1O1O 

w2, sec-2  

Present  analysis 1 Reference 15 

n = l  

1.17339 X lo8 
1.41017 X lo9 
4.09860 X lo9 
5.83357 X lo8 
2.78500 X lo9 
6.67902 X lo9 
1.02452 X lo9 
1.18772 X 1O1O 
4.51464 X lo9 
1.26785 X lo9 
1.94100 X 1O1O 
7.05640 X lo9 
1.39208 X lo9 
2.91681 X 1010 
1.04453 X 1010 

n =  

2.17401 X lo6 
1.04833 X 1O1O 
3.09779 X 1010 

2.70603 X lo7 
1.18310 X l o l o  
3.40266 X lolo 

1.00599 X lo8 
1.39500 X l o l o  
3.92032 X 1010 

2.22493 X lo8 
1.67738 X 1O1O 
4.65653 X 1O1O 

3.72329 X lo8 
2.02963 X 1O1O 
5.61740 X 1O1O 

1.17339 X 108 
1.41017 X lo9 
4.09860 X lo9 

5.83356 X lo8 
2.78500 X lo9 
6.67902 X lo9 

1.02451 X lo9 
1.18772 X 1O1O 
4.51457 X lo9 

1.26782 X lo9 
1.94088 X 1O1O 
7.95582 X lo9 
1.39201 X lo9 
2.91617 X 1010 
1.04425 X 1O1O 

2.17401 X lo6 
1.04833 X l o l o  
3.09779 X lo lo  

2.70601 X lo7 
1.18310 X l o l o  
3.40266 X 1O1O 

1.00594 X lo8 
1.39499 X 1O1O 
3.92031 X 1O1O 

2.22462 X lo8 
1.67733 X 1O1O 
4.65745 X 1O1O 

3.72208 X lo8 
2.02922 X l o l o  
5.61693 X l o l o  

Present  analysis I Reference 15 

n = 2  

2.25430 X lo7 
3.1160 X lo9 
9.65443 X lo9 
1.90073 X lo8 
4.59200 X lo9 
1.24328 X 1O1O 

4.75299 X lo8 
6.60278 X lo9 
1.75057 X 1O1O 

7.55161 X lo8 
2.49175 X 1O1O 
9.22905 X lo9 
9.73034 X lo8 
3.46020 X 101o 
1.25978 X 1O1O 

n =  

1.11765 X lo6 
1.60902 X l o l o  
4.68747 X 1O1O 

1.27354 X lo7 
1.73881 X l o l o  
4.99865 X 101o 

5.13733 X lo7 
1.94829 X 1O1O 
5.52220 X lo lo  

1.24623 X lo8 
2.23239 X l o l o  
6.26256 X 1O1O 

2.27379 X lo8 
7.22276 X 1O1O 
2.58897 X l o l o  

2.25430 X lo7 
3.116 X lo9 
9.65443 X lo9 
1.90073 X lo8 
4.59200 X lo9 
1.24328 X 1O1O 

4.75290 X lo8 
6.60268 X lo9 
1.75056 X lo lo  

7.55117 X lo8 
2.49164 X l o l o  
9.22834 X lo9 
9.72909 X lo8 
3.45961 X 1O1O 
1.25946 X 1O1O 

1.11765 X lo6 
1.60902 X 1O1O 
4.68747 X lo lo  

1.27352 X lo7 
1.73881 X 1010 
4.99865 X 1O1O 

5.13704 X lo7 
1.94828 X 1O1O 
5.52219 X l o l o  

1.24601 X lo8 
2.23230 X 1O1O 
6.26249 X 1O1O 

2.27282 X lo8 
7.22237 X 1O1O 
2.58853 X 1O1O 
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m 

1 

2 

3 

4 

5 

m 

1 

2 

3 

4 

5 

n = 9  

TABLE V.- CORRELATION O F  FREQUENCY PARAMETER W2 O F  FREELY SUPPORTED CYLINDER 

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION O F  REFERENCE 15 - Concluded 

n = 

Present  analysis I Reference 15 

n =  6 

10 

9.09145 X lo5 
2.29598 X 1O1O 
6.62863 X 1O1O 

6.96234 X IO6 
2.42233 X l o l o  . 6.94380 X 10" 

2.85635 X l o7  
2.62905 X 1O1O . 7.47182 X l o l o  

7.33039 X lo7 
2.91264 X l o l o  
8.21554 X 1O1O 

1.42224 X 10' 
3.27094 X l o l o  . 9.17738 X l o l o  

2.50514 X lo6 
5.11057 X 1O1O . 1.45653 X lo1' 

3.91728 X lo6 
5.23161 X lo1' 

c 1.48862 X 10" 

9.27100 X lo6 
5.43242 X lo lo  
1.54218 X lo1' 

2.17922 X lo7 
5.71189 X l o lo  
1.61727 X 10l1 

4.41539 X lo7 
6.06912 X l o lo  

c 1.71401 X 1011 

r 

9.09145 X lo5 
2.29598 X 1O1O 
6.62863 X 1O1O 

6.96226 X lo6 

6.94380 X 1O1O 

2.85615 X lo7 
2.62903 X 1O1O 
7.47182 X 1O1O 

7.32876 X I O 7  
2.91254 X l o l o  
8.21548 X l o l o  

1.42150 X lo8 

9.17704 X 1O1O 

2.42233 x 1O1O 

3.27049 x l o l o  

2.50514 X lo6 
5.11057 X l o l o  
1.45653 X 10l1 

3.91725 X lo6 
5.23162 X 10" 
1.48862 x 1011 

9.27021 X lo6 
5.43241 X l o l o  
1.54218 X 10l1 

2.17854 X lo7 
5.71180 X l o l o  
1.61727 X 10l1 

4.41191 X lo7 
6.06864 X 1O1O 
1.71401 X 10l1 

w2, sec-2 

Present  analysis I Reference 15 

n 

1.11505 X lo6 
3.10870 X 1O1O 
8.92182 X 10" 

4.56899 X lo6 
3.23267 X l o l o  
9.23964 X 10" 

1.74106 X lo7 
3.43697 X l o l o  
9.77096 X l o lo  

4.56222 X lo7 
3.71926 X lo lo  
1.05176 X 10l1 

9.20757 X lo7 
4.07780 X 10" 
1.14813 X 10" 

1.11505 X lo6 
3.10870 X 1O1O 
8.92182 x 1010 

4.56892 X IO6 
3.23267 X 10'' 
9.23964 X 10" 

1.74092 X IO7 
3.43696 X 1O1O 
9.77096 X l o l o  

4.56103 X lo7 
3.71916 X l o l o  
1.05176 X lo1' 
9.20184 X lo7 
4.07733 X l o l o  
1.14812 X 1011 

3.75508 X lo6 
6.29952 X l o l o  
1.79157 X 10l1 

4.75813 X lo6 
6.41965 X l o lo  
1.82376 X lo1' 

8.48546 X lo6 
6.61922 X l o l o  
1.87746 X 10l1 

1.72993 X lo7 
6.89750 X lo lo  
1.95275 X 10l1 

3.34003 X lo7 
7.25384 X 10" 
2.04966 X 10l1 

3.75508 X lo6 
6.29952 X l o l o  
1.79157 X lo1' 

4.75810 X lo6 
6.41965 X 10" 
1.82376 X 1011 

8.48484 X lo6 
6,61921 X 10" 
1.87746 X 10l1 

1.72939 X lo7 
6.89741 X l o l o  
1.95272 X 10l1 

3.33725 X lo7 
7.25336 X 10" 
2.04960 X 10l1 

Present  analysis 1 Reference 

n =  8 

1.64300 X IO6 
4.04694 X l o l o  
1.15673 X 1011 

3.77396 X lo6 
4.16922 X lolo 
1.18870 X lo1' 
1.18524 X lo7 
4.37157 X lolo 
1.24207 X 1011 

3.03024 X lo7 
4.65240 X l o l o  
1.31698 X lo1' 
6.21633 X lo7 
5.01043 X 10" 
1.41378 X 10l1 

1.64300 X 1 
4.04694 X 1 
1.15673 X 1 

3.77391 X 1 
4.16922 X 1 
1.18870 X 1 

1.18514 X 1 
4.37156 X 1 
1.24207 X 1 

3.02935 X 1 
4.65231 X I 
1.31698 X 1 

6.21190 X 1 
5.00996 X 1 
1.41353 X 1 
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n = 4  m n =  

TABLE VI.- COMPARISON O F  FREQUENCY PARAMETER w2 O F  AN ORTHOTROPIC CYLINDER 

WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS 

AND EXACT METHOD OF REFERENCE 16 

5 

Presen t  analysis 1 Reference 16 

n = O  
~- 

n = 3  

- 
( 8.37907 X l o 9  

[ 6.73909 X l o9  

7.77840 X l o 9  [ 1.95747 X l o l o  
7.21064 X l o9  
7.97769 X l o 9  [ 3.42687 X 1O1O 
1.28198 X 1O1O 

f 8.18535X lo9 
5.32836 X 1O1O 
2.00346 X 1O1O 

- 

- -  
f 5.53142 X l o 7  

( ::::;:; :: :,":: 
f 1.16635 X 108 

4.85733 X 101O 
9.33321 X 1O1O 

( 3.18483 X l o8  
5.04809 X 1O1O 
I 1.05863 X 1 0 l 1  

( 7.36447 X l o 8  
5.37677 X l o l o  
I 1.22697 X 10 l1  

1.40603 X l o9  
1.43650 X 1 0 l 1  

c 5.86279 X l o l o  

8.37907 X 109 

8.01167 X l o 8  
6.73909 X l o9  
1.00045 X l o l o  
3.20467 X l o 9  
7.77835 X l o 9  
1.95744 X l o l o  
7.21050 X l o 9  
7.97727 X l o9  
3.42661 X 1O1O 
1.28198 X l o l o  
8.18303 X l o9  
5.32704 X 1O1O 
2.00292 X 101O 

2.00989 x 109 

.~. 

5.53142 X l o 7  
4.77293 X l o l o  
8.54639 X 1O1O 

1.16633 X l o 8  
4.85733 X l o l o  
9.33321 X l o l o  
3.18432 X l o 8  
5.04807 X 1O1O 
1.05864 X 10 l1  

7.35971 X l o8  
5.37662 X 10" 
1.22696 X 1 0 l 1  

1.40340 X l o 9  
1.43641 X 1 0 l 1  
5.86202 X l o l o  

w2, sec-2 

Presen t  analysis I Reference 16 

n =  1 

1.09559 X l o 8  
6.98986 X 109 
1.76461 X 101O 

9.33628 X l o 8  
1.05341 x 1O1O 
2.20377 x 1O1O 

2.47618 X l o 9  
3.14843 x l o l o  
1.41632 x l o l o  
4.14783 x 109 
4.59040 x 1O1O 
1.85782 x 1O1O 

5.52799 X 109 
6.48262 X 1010 
2.47182 X 101O 
.~ 

1.85439 X l o 8  
8.43972 X 1010 
1.43693 X 1011 

2.30036 X 108 
8.44403 x 1O1O 
1.52391 X 1 0 l 1  

3.55839 X l o 8  
8.52479 X lo1' 
1.66119 X 1 0 l 1  

6.21337 X l o 8  
8.73284 X 1O1O 
1.84339 X 1 0 l 1  

1.08415 X 109 

2.06739 X 1 0 l 1  
9.09817 x 1010 

1.09559 X l o8  
6.98986 X l o9  
1.76461 X l o l o  
9.33624 X l o 8  
1.05341 X l o l o  
2.20377 X l o l o  
2.47610 X lo9 
3.14841 X l o l o  
1.41630 X l o l o  
4.14727 X l o 9  
4.59018 X 1O1O 
1.85770 X l o l o  
5.52532 X l o 9  
6.48142 X 1O1O 
2.47122 X 10" 

1.85439 X l o 8  

1.43693 X 1 0 l 1  

2.30034 X l o 8  
8.44403 X 1O1O 
1.52391 X 1 0 l 1  

3.55792 X l o 8  
8.52477 X l o l o  
1.66119 X 1 0 l 1  

6.20889 X l o8  
8.73268 x 1O1O 
1.84338 X 1 0 l 1  

1.08160 X l o 9  
9.09739 X 1O1O 
2.06733 x 1 0 l 1  

8.43972 x l o l o  

Presen t  analysis I Reference 16 

n = 2  

2.15504 X l o 7  
2.18774 X IO1' 
4.35227 X l o l o  
1.96173 X l o8  
2.39218 X l o l o  
5.00686 X l o l o  
7.07832 X l o 8  
2.70286 X l o l o  
6.10771 X l o l o  
1.56673 x l o 9  
7.64494 X l o l o  
3.13158 X 1O1O 

2.66133 x lo9  
9.60704 X 1O1O 
3.70574 X 1O1O 

- 

4.74829 X l o8  
1.31754 X 1011 
2.18346 X 1 0 l 1  

5.25903 X l o8  
1.31272 X 1 0 l 1  
2.27577 x 1 0 l 1  

6.44414 X l o 8  
1.31219 X 1 0 l 1  
2.42199 x 1 0 l 1  

8.74824 x l o 8  
1.32196 X 1011 
2.61593 X lo1' 
1.27123 X l o9  
1.34611 X 1 0 l 1  
2.85407 X 1 0 l 1  

2.15504 X l o 7  
2.18774 X l o l o  
4.35227 X l o l o  
1.96170 X l o 8  
2.39218 X l o l o  
5.00686 X l o l o  
7.07771 X l o 8  
2.70284 X l o l o  
6.10769 X 10" 

1.56621 X l o 9  
7.64474 x 1O1O 
3.13143 X 1O1O 

2.65858 X l o 9  
9.60598 X 1O1O 
3.70507 X 10" 

4.74829 X l o8  
1.31754 X 1 0 l 1  
2.18346 X 1 0 l 1  

5.25901 X l o 8  
1.31272 X 1 0 l 1  
2.27577 X 10 l1  

6.44369 X l o 8  
1.31219 X lo1' 
2.42198 X 1 0 l 1  

8.74385 X l o 8  
1.32194 X 1 0 l 1  
2.61592 X 1 0 l 1  

1.26872 X l o9  

2.85339 X 1 0 l 1  
1.34603 x 10 l1  

t 
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m 

1 

2 

3 

4 

5 

m 

1 

2 

3 

4 

5 

n = 9  

TABLE VI.- COMPARISON OF FREQUENCY PARAMETER w2 OF AN ORTHOTROPIC CYLINDER 

WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS 

AND EXACT METHOD OF REFERENCE 16 - Concluded 

P resen t  analysis I Reference 16 

n = 6  

f 1.01231 X lo9 

1.07681 X lo9 [ 1.88906 X 10l1 
3.19069 X 10l1 

1.21550 X lo9 [ 1.88205 X 10l1 
3.34351 X 1011 

1.45929 X lo9 [ 1.88257 X 10l1 
3.54695 X 10l1 

1.85912 X lo9 [ 1.89540 X 10l1  
3.79646 X 10l1 

5.31084 X lo9 [ 4.27220 X 10l1 
6.82044 X 1011 

f 5.45179 X lo9 

5.70636 X lo9 { 4.24463 X 10l1 
7.08592 X 10l1 

6.10407 X IO9 
4.22240 X 10l1 
7.30801 X 10l1 

4.21001 X 10l1 c 7.58307 X 1011 

6.68682 x 109 

c 

1.01231 X lo9 
1.89737 X 1011 
3.09484 X 10l1 

1.07880 X lo9 
1.88906 X 10l1 
3.19069 X 10l1 

1.215546 X lo9 
1.88205 X 10l1 
3.34351 X 10l1 

1.45885 x lo9 
1.88256 X 10l1  
3.54700 X 1011 

1.65661 X lo9 
1.89533 X 1011 
3.79631 X 10l1 

5.31084 x lo9 

6.82044 X 10l1  

5.45179 X lo9 
4.25852 X 1011 

4.27220 x 1011 

6.92169 x l o l l  

5.70631 X lo9 
4.24022 X 10l1 
7.08591 X 10l1 

6.10360 X lo9 

7.30800 X 1011 

6.68415 X lo9 
4.21001 X 10l1 
7.58295 X 10l1 

4.22239 x 1011 

w2, sec-2 

P resen t  analysis I Reference 16 

n = 7  

._ 

1.90756 X lo9 
2.58318 X 10l1 
4.17137 X 10l1 

1.99482 X lo9 
2.47246 X 10l1 
4.26965 X 10l1 

2.16263 X lo9 
2.56061 X lo1' 
4.42'737 x 10l1 

2.44390 X lo9 
2.55363 X 10l1 
4.63855 X 10l1 

2.88407 x 109 
2.55664 X 1011 
4.89809 x 10l1 

n =  

8.13868 x 109 
5.27528 X 10l1 
8.39310 X 10l1 

8.31196 X lo9 
5.26066 X 10l1 
8.49529 X lo1' 
8.61988 x 109 
5.24019 X lo1' 
8.66169 X 10l1 

9.09120 x 109 
5.21849 X 10l1 
8.88772 X lo1' 

9.76702 X lo9 
5.20031 X 10l1 
9.16865 X 10l1 

1.90756 X lo9 
2.58318 X 10l1 
4.17137 X 10l1 

1.99481 X lo9 
2.47246 X 10l1 
4.26965 X 10l1 

2.16258 X lo9 
2.56061 X 10l1 
4.42737 X 1011 

2.44346 X lo9 
2.55362 X 10l1  
4.63851 X 10l1 

2.88152 X lo9 
2.55657 X 10l1 
4.89791 X 10l1 

1 

8.13868 x 109 
5.27528 X 10l1 
8.39310 X 1011 

8.31196 X lo9 
5.26066 X 10l1 
8.49529 X 10l1 

8.61982 X lo9 
5.24019 X 10l1 
8.66169 X 1011 

9.09072 X lo9 
5.21849 X 10l1 
8.88769 X 10l1 

9.76427 X lo9 
5.20024 X lo1' 
9.16854 X 10l1 

~~ 

Presen t  analysis I Reference 
- 

n = 8  

3.29043 X 109 
3.37482 X 10l1 
5.41321 X 10l1 

3.40265 X lo9 
3.36238 X 10l1 
5.51321 X 10l1 

3.61029 X lo9 
3.34688 X 10l1 
5.67465 X 10l1 

3.94411 X lo9 

5.89187 X 10l1 
3.33389 x 1011 

4.44733 x 109 

6.15984 x 1011 
3.32856 X 10l1 

3.29043 X 1( 
3.37482 X 1( 
5.41321 X 1( 

3.40265 X 1( 
3.36238 X 1( 
5.51321 X 1( 

3.61024 X 1( 
3.34688 X 1( 
5.67462 X I( 
3.94365 X 1( 
3.33387 x 1( 
5.89184 X 1( 

4.44473 x 1( 
3.32849 X 1( 
6.15972 X 1( 

~ 

- 

~~ 
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TABLE VI1.- NATURAL FREQUENCIES OF A FREE-FREE 120' CONICAL 

FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CIRCULAR 

NODE LINES IN NORMAL DISPLACEMENT w 

[n = 23 

1 Mode- identification 
figure 

1 

3.903 X lo4 
1.780 X lo9 

Number of circular 
node lines in w 

3.900 X lo4 
1.781 X lo9 

4 
4 
4 

4.337 x 109 

1.858 X lo7 
8.045 X lo9 
2.267 X lo7 
2.422 X lo9 
1.311 X 1O1O 

2.754 X lo7 
4.127 X lo9 
1.874 X 1O1O 

3.314 X lo7 
6.342 X lo9 
2.019 X 101O 

4.337 x 109 J 
1.861 X lo7 
8.045 X lo9 
2.286 X lo7 
2.422 X lo9 
1.314 X 1O1O 

2.831 X lo7 
4.127 X 109 
1.951 X 1O1O 

3.654 X lo7 
6.342 X lo9 

1 
- 
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TABLE VIII.- NATURAL FREQUENCIES OF A CLAMPED-FREE 120' CONICAL 

FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CIRCULAR 

NODE LINES IN NORMAL DISPLACEMENT w 

pl = 23 

Number of circular 
node lines in w 

1 
1 
1 

2 
2 

- 

3 
3 
3 

4 
4 
4 

5 
5 
5 

._. 

Mode- identif ication 
figure 

d ,  sec-2 

Present analysis 

1.794 X lo9 
4.290 X lo9 

1.199 x 107 

1.948 X lo7 
1.420 X lo9 

2.420 X lo7 
3.069 X lo9 
8.695 X 109 

~~ . .  

2.940 X lo7 
1.304 X 1O1O 
5.224 X 1O1O 

3.545 x 107 
1.025 X 1010 
1.760 X 101O 

Reference 1 

1.195 X 107 
1.795X lo9 
4.290 X lo9 

1.953 X lo7 
1.420 X 109 

2.453 X lo7 
3.076 X lo9 
8.702 X lo9 

I 



TABLE M.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL HAVING 

POSITIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NODAL CIRCLES 

IN NORMAL DISPLACEMENT w 

pl = 21 

Number of circular 
node lines in w 

0 
0 
0 

1 
1 
1 

-~ 

2 
2 
2 

I 

52 2 , sec-2 
(present analysis) 

0.1425 
.2340 

- 
5.6 59 

0.3607 
3.918 
9.754 

0.5507 
5.914 

15.90 

0.6641 
8.571 

24.40 

0.7260 
12.26 
35.24 
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3 TABLE X.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL WITH 

NEGATIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NUMBER OF 
, CIRCULAR NODE LINES IN NORMAL DISPLACEMENT w 

[n = 23 
Mode - identification M, sec-2 I figure (present analysis) 

Number of circular 
node lines in w 

~ 

0 
0 
0 

4 
4 
- 

0.0246 
1.888 
5.804 

0.1950 
3.243 
8.660 

0.403 
5.128 

13.96 

0.5547 
1.347 
7.738 

0.6499 
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S 

Figure 2.- Typical idealization of shell of revolution showing geometrically exact f ini te elements. 
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t 
rows 

6 ( K + I )  c o l s .  J 
I I 2 C O I  s . 4  

I 
k= I , 

k = 2  t- ’ 

1 

kZK-1 
I w 
lk= K 

Figure 3.- I l lustration of synthesis of stiffness and mass matrices. 

6 ( K  + I )  rows 



- 

(a) Isotropic cylinder. 

1 /R1=  0 
1/R2 = 0.2 in . - l  = 0.07874 c m - l  

r' = 0 

I 

- 

(b) Orthotropic cylinder. 

Figure 4.- Properties of the shells analyzed for sample calculations. 

Ri = 0 
L 5: 20 in. = 50.8 c m  
E = 2.96 X 107 lb/in2 = 2.0408 X lo7 N/cm2 
1-1 = 0.29 

55 

I 

h = 0.065 in. = 0.165 c m  
L = 15.53 in. = 39.4462 c m  

ph = 0.1211 x 10-4 lb-sec2/in3 = 0.3287 X 

C11 = 1.25 X lo6 lb/in. = 2.189 X lo6 N/cm 
C12 = 0.187 X lo6 lb/in. = 0.327 X lo6 N/cm 
C22 = 0.742 X lo6 lb/in. = 1.299 X lo6 N/cm 

N-sec2/cm3 



I " 

I 

I 

r = 3 + s 6 / 2  (in.) = 7.62 + s 6 / 2  (cm) 
1/R1= 0 

(in-1) = 1 (cm-1) 
0.06562 + s f i  

1/R2 = 1 
0.1667 + s f l  

r' = @/2 
R: = 0 

E = 1 X lo7  lb/in2 = 6.8948 X 106 N/cm2 
1-1 = 0.315 
p = 2.54 X lb-sec2/in4 = 0.2714 X N-seca/cm4 
h = 0.025 in. = 0.0635 cm 

(c) Isotropic 1200 conical f rustum. 

- 1.879 (in.) = 7.62 cos 0.5 - - - 4.773 (cm) ( 7 i 2 )  
1/Ri = 0.333 in-l = 0.131 cm-1 

cos 0.5 - ;) ( COS (0.5 - -) S 
7 m .  . . (cm-l) 
S (in-1) = 

7.62 COS 0.5 - - -4.773 

I -  

( 7.62) 
1 p 2  = 

r' e sin(0.5 - i) = sin(1.27 - s) 

L = 3 in. = 7.62 cm 
E = 1 lb/in2 = 0.68948 N/cm2 
p = 0.30 
p = 1 lb-secz/in4 = 0.10687 N-sec2/cm4 
h = 0.001 in. = 0.00254 cm 

7.62 
R; = 0 

(d) Isotropic shel l  of positive Gaussian curvature. 

Figure 4.- Continued. 
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r = 1 - 20cos[-(1.5 - s)O.5] - l} (in.) 

= 2.54 - 50.8@os[-(3.81 - s)O.O1969] - 1> (cm) 

1 /R1 = -0.05' in-1 = -0.01969 c m - l  

-cosE(1 .5  - s)O.Od 

-1 + 2 0 ( c o s ~ ( 1 . 5  - s)O.O5] - l} 
1/R2 = in- 1 

-cos[-(3.81 - s)O.O1969] 

-2.54 + 50.8(cos[-(3.81 - s)O.O1969] - l} 
- - Cm-1 

r' = s inE(1 .5  - s)O.Oq = sin[-(3.81 - s)0.019693 

L = 3 in. = 7.62 c m  
E = 0.91 lb/in2 = 0.6274 N/cm2 
~ l ,  = 0.30 
p = 1 lb-sec2/in4 = 0.10687 N-sec2/cm4 
h = 0.001 in. = 0.00254 c m  

R i  = 0 

(e) Isotropic shel l  of negative Gaussian curvature. 

r = 0.5 + s (in.) = 1.27 + s (cm) 
1/R1 = 0 

r' = 1 
1/R2 = 0 

1 R i  = 0 

I L = 0.5 in. = 1.27 c m  
E = 10.92 lb/in2 = 7.5291 N/cm2 
p = 0.30 
p = 1 lb-secz/ in4 = 0.10687 N-sec2/cm4 
h = 1 in. = 2.54 c m  

I 
. I .  

. 
~ ~~ 

( f) Isotropic annu la r  plate. 

Figure 4.- Concluded. 
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o Ca lcu la ted  values - Faired curve 

I I I I I I 
0 2 4 6 8 IO  

Number o f  c i r c u m f e r e n t i a l  waves, n 

Figure 5.- Minimum circular frequencies of a cylindrical shell computed by present method and method of reference 15. Freely supported edges. 
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I 

a Ca lcu la ted  values 
o Experiment (ref. 16) 

Fai red curve 

0 

I I , . .  
0 2 

- I I I 
I O  

- 1 .  
4 6 8 

Number o f  circumferent ia  I waves, n 

Figure 6.- M i n i m u m  c i r c u l a r  frequencies of a n  orthotropic cyl indr ical  she l l  computed by present method and method of reference 16. 
Freely supported edges. 

59 



IO5  

N 

I o3 

I O 2  

C a l c u l a t e d  v a l u e s  
o E x p e r i m e n t  ( r e f .  I)  

F a i r e d  cu rve  

I 1 1 
a .I 1 

0 2 4 6 

Number o f  c i r c u m f e r e n t i a l  waves, n 

Figure 7.- Minimum circular frequencies of a 120° conical f rustum by present method and method of reference 1. 
Free-free edge conditions. 
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I 07 

(u 

3 

o Calcu la ted  values 
- Faired curve 

I O L  
0 2 4 6 8 IO 

Number o f  c i rcumferent ia l  waves, n 

Figure 8.- Minimum circular frequencies of a 1200 conical f rustum by present method and method of reference 1. 
Clamped-free edge conditions. 
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.4 2 

.4 c 

.38 

.36 

.34 

.32 

.30 

o C a l c u l a t e d  values 
Faired curve 

0 2 4 6 0 IO 
Number o f  c i r cumfe ren t ia l  waves, n 

Figure 9.- Minimum nondimensional frequencies of a shell of positive Gaussian curvature as computed by present method and 
method of reference 4. Freely supported edges. 
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.7c 

.60 

.5c 

.4c 

.3c 

.2c 

. I C  

C 

o Carculated values 
Faired curve 7 

2 4 6 8 I O  

Number o f  c i rcumferent ia l  waves,  n 

Figure 10.- Minimum nondimensional frequencies of a shell of negative Gaussian curvature as computed by present method and 
method of reference 4. Freely supported edges. 

63 

I 



0 Ca lcu la ted  va lues 
- F a i r e d  curve 

I I I I I I 
0 2 4 6 a I O  

Number of circumferentia I waves. n 

Figure 11.- M i n i m u m  c i r c u l a r  frequencies of an  annu la r  plate as computed by present method and method of reference 17. Free-free edges. 
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IO1 

I O [ (  

N 
I 
0 
W 
v) 

N 

3 .. 
N 

A 
V 
c 
W 
3 
Is 

? 
.4- 

IO! 
0 
3 
0 

- 
L .- 
0 
v 

I O '  

I O  I 

0 
I 
2 

I 

3. 
Number of meridional waves, m 

I 
4 
I 

5 

Figure 12.- Frequencies of an isotropic cylinder as computed by present method and method of reference 15. Freely supported edges; n = 2. 
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1 _. I 
0 I i 3 4 5 -- - 

Number o f  mer id ional  waves, m 

Figure 13.- Frequencies of a n  orthotropic cyl inder as computed by present method and method of reference 16. 
Freely supported edges; n = 2. 
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I 
0 

0 
rr d 

o Calculated values 
Faired curve 

I I I I 
2 3 4 5 

Number o f  c i rcular  node l ines in w 

I 

Figure 14.- Circular frequencies of a free-free lMo conical frustum as computed by present method and method of reference 1. 
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I 08 

IO7 I 
0 

I I . I 
I 2 3 4 

Number of c i rcu lar  node lines in  w 

I 

5 

o Calcu lated values 
- Fai red  curve 

Figure 15.- Frequencies of a 1200 conical f r u s t u m  shel l  as computed by present method and method of reference 1. Clamped at 
smaller end; n = 2. 

68 

L 



(a) On8 nodal olrole In w displooenent. (b)  Two nodal olrolao In w dlsplapdment, ( 0 )  Three nodal ciroles In w diaplac~ment. (di Four nodal circles In w diaplaoement. 

Figure 16.- Natural mode shapes of a free-free 120° conical f rus tum corresponding to the frequencies shown In f igure 14. 
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(J) On0 nodal clrole In w dI8)ilaos~ent. 

VHAX : 35.317 

(k)  Two nodal olrclas In )I dlsplaosmant, 

Y 

$ 0  
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Figure 16.- Continued, 
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(a) Ons nodal c l r o l a  In w dlopl~.oement .. 
( 0 )  Throe nodal  o l r o l e ~  In w dleplnoemant (d)  Four nodal  olrclee In w dlsplaoement 

Figure 17,- Natural mode shapes of a clamped-free 120' conical frustum corresponding to the frequencies shown In figure 15. 





( I )  Four nodal  olroles In R dlopluoement (1) FIVE nodal  nlrQlee In w dlsplacsment (k) On8 n o d e l  o l r o l s  In w dlaplaoemellt 

Figure 17.- Contlnued, 

(1) Three nodal ol rn las  In w dleplacamant 
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o Calculated values 
- Foired curves 

1 I I I J 
0 I 2 3 4 

Number o f  circular node lines i n  w 

Figure 18.- Circular frequencies of a shell with positive Gaussian curvature with free[y supported edges. n = 2. 
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IC  

I 

. c  

0 Calculated vaiues 
Faired curve __ 

I I i I 

0 I 2 3 4 

N u m b e r  of nodal circles in  w 

Figure 19.- Circular frequencies of a shell with negative Gaussian curvature havinq freely supported edges. n = 2. 
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(4) ZEPO nodal  oirclee In  w dlaplaoowant (b) one nodal olrols In w dlaplPo.”t ( 0 )  Two nodal  nlroles In P dlsplaoeaent (d)  Threa nodal  olrcles In w dlaplaoEment , 

Figure 20,- Natural mode shapes of a shell of positive Gaussian curvature corresponding to the  frequencies shown in f igure  18. 
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Figure 20.- Continued. 



(li) Zara nadal. olpalsa In 1 dlapln~einsnt (J) Four nodal olr0lae In w Ilsplnoemant 

Figure 20.- Continued. 

(1 )  one nodol 0lral0 In w diaplaoement 



Figure 20.- Concluded. 



( a )  Zero nodal cIrclD6 In w dl6placement 

Figure 21.- Natural mode sliapes of a shel l  having negative Gaussian curvature corresponding to the frequencies shown in f igure 19, 
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( 1 )  Throe nodal  c l r o l n a  in w dleplaccment ( J )  Four n o d a l  cirolo6 I n  w dlsplacanient ( I C )  Zero nodal  c i r c l e s  I n  w dlsplaoemcnt 

Figure 21.- Continued. 

(1) on0 nodal  o I r 0 1 ~  In w dleplaonmant 



(a) Two nodal clrclnn in w dieplacemont (n) Thrnn nodal clrclne ~n w displacement (c)  Four nodal clrcles In w displacemant 

Figure 21,- Concluded, 
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